RESUMEN EJECUTIVO
Durante los últimos años, la inteligencia artificial (IA) y el aprendizaje automático (ML) han estado a la vanguardia del círculo de publicidad de software empresarial. La promesa de incorporar capacidades predictivas en las cadenas de valor operativas, como el análisis, la precisión de pedidos e inventario, y la reducción del tiempo de inactividad por mantenimiento generan mucha emoción en la mejora del valor de cada dólar de inversión gastado en soluciones, y con razón. La capacidad de aprovechar esas innovaciones es parte de un mayor movimiento en los intereses de gasto en TI y software para generar un mayor ROI en el flujo de trabajo y la productividad del sistema.
El enfoque de Infor hacia la inteligencia artificial y el aprendizaje automático busca abordar estos desafíos directamente, utilizando el ecosistema estratificado de Infor® OS. Infor OS unifica productos ERP aislados para garantizar que los usuarios estén tomando decisiones en sincronía con el estado de las operaciones en otros lugares. Esta tecnología puede ser una herramienta crucial en el contexto comercial actual, donde los avances recientes han hecho de la IA una fuente de valor invaluable, cuando se utiliza correctamente.
La IA, como concepto, apenas es nueva, pero con las empresas del siglo XXI que transfieren sus inversiones a la nube a sistemas basados en SaaS e IaaS, vale la pena considerar el papel de la IA como tecnología actual y evaluar cómo superponer mejor estas tecnologías en rápida evolución, y a menudo aún emergentes, como un medio para crear un valor real y tangible. Por lo general, las organizaciones que desean adoptar la IA no tienen problemas para encontrar razones por las que podría ayudar a su negocio, pero enfrentan desafíos con la mejor manera de implementarla y aprovecharla. Comencemos a analizar todas las capas que tiene la IA para comprender mejor cómo la IA y el aprendizaje automático (ML) pueden ayudar a poner en práctica las perspectivas basadas en los datos.
En un sentido general, la IA es un término amplio que abarca campos como matemáticas, informática, psicología, filosofía y lingüística. Hay dos categorías de IA: IA general y IA restringida. La IA general es un tipo de inteligencia adaptable basada en la inteligencia que exhiben los seres humanos. A menudo se muestra en películas donde los sistemas informáticos son capaces de aprender a resolver problemas y llevar a cabo una amplia variedad de tareas especializadas por sí solos. La IA restringida es una inteligencia asociada con una tarea específica, en la que un sistema se ha entrenado explícitamente contra un conjunto de datos específico y no se desvía de esa tarea. Algunos ejemplos de IA restringida en el mundo actual incluyen reconocimiento de voz/facial, automóviles autónomos, bots de ajedrez, análisis de infraestructura de drones, mantenimiento predictivo, etc. El proceso de entrenamiento de estos sistemas de IA restringidos y la base para casi toda la IA que existe hoy en día a menudo se denomina aprendizaje automático aplicado. Este proceso de entrenamiento permite que un sistema “aprenda” de un problema al exponerlo a datos de capacitación sustanciales y agregar un ciclo de retroalimentación que le permitirá identificar errores y casos de falla, aumentando la precisión y la efectividad con el tiempo.
Si bien las promesas del aprendizaje automático son altas, conllevan desafíos significativos. Debido a que los procesos de ML dependen de los datos y a menudo se centran en procesos comerciales singulares, las implementaciones pueden requerir años de previsión y planificación. Tradicionalmente, los científicos de datos debían cargar enormes volúmenes de datos sin procesar en entornos de desarrollo locales y limpiarlos, analizarlos y refinarlos para garantizar su precisión.
También se requirieron inversiones significativas en infraestructura y hardware para ayudar a escalar los pasos de captura, almacenamiento y procesamiento de datos. La aplicación Machine Learning de Infor AI reduce la barrera de entrada a las perspectivas de ML al proporcionar experiencias de modelado predictivo a través de un ecosistema existente de aplicaciones dentro de la plataforma Infor OS. Este ecosistema estratificado aborda necesidades como la integración de aplicaciones, el procesamiento de datos y la toma de decisiones. A continuación, exploraremos tres componentes de Infor OS y cómo funcionan juntos para proporcionar una historia completa de IA.
Infor ION
El primer componente es la Red abierta inteligente (ION) de Infor OS. Infor ION® es una plataforma de integración que permite a los usuarios crear redes de integración de aplicaciones confiables, escalables y seguras. ION viene equipado con un conjunto de conectores tecnológicos que amplía la cantidad de interfaces integradas entre Infor CloudSuite y aplicaciones de terceros.
Esto significa que si hay una fuente de datos a la que se debe acceder, ION puede conectarse a ella. Esto es fundamental para el aprendizaje automático, ya que las fuentes de datos a menudo se distribuyen en varias aplicaciones diferentes. Además, la conectividad híbrida de ION significa que los clientes que aún ejecutan aplicaciones locales pueden garantizar que el ecosistema de datos no esté fracturado ni sea incapaz de beneficiarse de las tecnologías SaaS.
Una parte importante de la plataforma de integración de ION es API Gateway. Permite a los usuarios implementar, administrar y probar de forma segura API para aplicaciones tanto de Infor como de otras aplicaciones. Esto significa que, ya sea que utilice una aplicación Infor CloudSuite, un proveedor externo o una aplicación interna, las API pueden aprovecharse para la integración, la generación de informes, el desarrollo de aplicaciones y la adquisición de datos para entradas de aprendizaje automático. Además, API Gateway puede ser un medio de consumo para los modelos de ML de Infor AI que permite una rápida implementación y pruebas en todas las aplicaciones comerciales conectadas. El consumo de modelos de aprendizaje automático, en forma de API, es fundamental para la estrategia de IA de Infor OS porque reduce drásticamente el tiempo de implementación al eliminar la necesidad de desarrollo personalizado en cada aplicación comercial.
Infor Data Lake
El segundo componente de Infor OS es Infor Data Lake. Los lagos de datos son esenciales para las plataformas de aprendizaje automático porque albergan la pieza más importante: los datos. Un rico historial de transacciones y operaciones comerciales ejecutadas son esenciales para la precisión y, por lo tanto, la utilidad de cualquier predicción de ML. Los lagos de datos almacenan datos comerciales sin procesar, pero a diferencia de los almacenes de datos, no necesitan que los datos se formateen de ninguna manera en particular y son infinitamente escalables. A menudo, las empresas solo capturan un subconjunto de los datos que producen y utilizan esos datos para impulsar métricas específicas e indicadores clave de desempeño, pero esto supone que la organización ya conoce la pregunta que desea responder. ¿Qué sucede mañana cuando se necesitan perspectivas adicionales? Al almacenar de manera barata todos los datos empresariales producidos, los lagos de datos permiten perspectivas poderosas y dan una gran ventaja a los requisitos del mañana.
Infor Data Lake utiliza ION y API Gateway para conectarse tanto a Infor CloudSuite como a aplicaciones de terceros, vinculando todas estas fuentes de datos en una sola ubicación. Una vez almacenados en el lago de datos, el catálogo de datos categoriza de manera inteligente cantidades masivas de datos y les brinda a los usuarios información sobre propiedades como tipos de datos y marcas de tiempo. Las herramientas Compass también permiten a los usuarios comerciales consultar los datos y comenzar el proceso de exploración de datos rápidamente. Estas herramientas pagan enormes dividendos y permiten a los usuarios menos técnicos crear y limpiar conjuntos de datos al crear modelos de aprendizaje automático.
Infor Inteligencia Artificial (IA)
El tercer componente de Infor OS es la plataforma Infor AI. Infor IA es una plataforma de aprendizaje automático aplicada creada tanto para científicos de datos como para usuarios empresariales. El objetivo general de Infor IA es simplificar el proceso de creación de modelos de ML mediante la abstracción de conceptos de ciencia de datos y la provisión de un modelador intuitivo que permita a los analistas de datos o negocios importar, limpiar, entrenar y evaluar conjuntos de datos. Al hacer uso de ION, Data Lake y API Gateway, Infor IA reduce los tiempos de implementación de ML de un proceso que lleva meses o años a un proceso que lleva días o semanas. Para las organizaciones que tienen personal de ciencia de datos a mano, Infor IA permite que se definan algoritmos personalizados y se inyecten secuencias de comandos en el proceso de transformación de datos. Debido a que los modelos de IA de Infor se implementan como un punto final de API dentro de API Gateway, los usuarios de CloudSuite pueden consumir estos modelos de varias maneras.
(Imagen: Infor IA Quest - Infor IA Quests se construyen encadenando bloques de actividad juntos, manteniendo el flujo de datos simple y fácil de seguir).
Las aplicaciones de Infor CloudSuite están construyendo sus propios modelos de IA de Infor y llamándolos directamente desde la aplicación, por lo que si usted es cliente de Infor, es posible que ya esté usando la IA de Infor. Las aplicaciones de terceros también pueden usar la definición de API en API Gateway para llamar y consumir modelos para sus propios fines. Además, los puntos finales de API se pueden utilizar como parte de una aplicación contextual personalizada, es decir, una aplicación que se ejecuta junto a una aplicación Infor CloudSuite y proporciona servicios predictivos basados en entradas en tiempo real. Imagine que tiene un vendedor que está tratando de cerrar una venta pero necesita bajar el precio para hacerlo. Un modelo de IA de Infor, entrenado con meses o años de datos de ventas, podría recomendar un porcentaje de descuento que gane el acuerdo y mantenga los márgenes.
(Imagen: Recomendación de IA de Infor - Las aplicaciones de Infor y de terceros pueden utilizar las Recomendaciones de IA de Infor dentro de sus propias aplicaciones a través de la API de predicción de IA de Infor).
Vamos a conectarnos
Comuníquese con nosotros y le pediremos a nuestro representante de aprendizaje que se comunique con usted en las próximas 24 horas hábiles.